CHAPTER 1 Investigation of Dam Site


CHAPTER 2 The Choice of Types of Dam

General Considerations, Solid Gravity Concrete Dams, Hollow Gravity Concrete Dams Arched Concrete Dams, Embankments, Timber Dams, Steel Dams, Other Types

CHAPTER 3 Preparation and Protection of the Foundation


CHAPTER 4 Hydraulic Model Studies

Introduction, Essential Considerations of Similarly, Criteria for Similarity, Types of Fluid Flow, Significance of the Froude Number, Significance of the Reynolds Number, Coefficient of Roughness in Model Tests, Examples in Hydraulic Similarity, Bibliography

CHAPTER 5 Flood Flows
General, Peak Flows-General, Record Floods of History, Comparison of Physical Characteristics, Flood Frequency Studies, Inherent Defects in Flood Frequency Studies, Comparison of Coefficients of Variation, Physical Indications of Past Floods, Flood Formulas, Possible Future Peaks, General, Mass Rainfall Curves, Hyetographs, General, Initial Loss, Infiltration Index, General, Components of Natural Hydrographs, Normal Recession Curves, Ground-Water Depletion Curves, Subdivision of Hydrographs, General, Unit Hydrographs from Isolated Unit Storms, Unit Hydrographs from Major Flood Records, Synthetic Unit Hydrographs-General, Synder’s Synthetic Unit-Hydrograph Relations, Unit-Hydrograph Peak Discharges Versus Drainage Area, Concentration of Run-off near Peak, S-Curve Hydrographs, Summary of Synthetic Unit-Hydrograph Computations, Unit-Hydrograph Adjustments, Comparison of Unit Hydrographs Derived from Major and Minor Flood Hydrographs, Selection of Unit Hydrographs for Design-Flood Computations, Reservoir Inflow Unit Hydrograph, General, Approximate Design-Storm Estimates for Seasons Without Snow, Method-1 Maximum Rainfall Depth-Duration Date and Rainfall-Excess, Method-2 Transposition of Record Storm: Rainfall-Excess Estimates, Method-3 Modified Storm Transposition: Rainfall-Excess Estimates, Flood-Flow Contributions from Melting Snow, Ground Conditions, Water Equivalent of Snow Cover, Free Water in Snow Cover Rate of Release by Melting-General, Heat Transfers from Air, Melting by Rainfall, Snow-Melt Estimates by Heat-Transfer Formulae, Snow-Melt Estimates by Degree-Day Method, Hyetograph of Snow-Melt Plus Rainfall, Hypothetical Hydrographs, Outline of Hydrograph Computations, Reservoir Flood-Routing Computations, Reservoir Stage at Beginning of Floods, Discharge Through Regulating Outlets, Reservoir Flood-Routing Method, Sample Flood-Routing Computations, Graphical Presentations of Flood-Routing Results, Freeboard, Margin of Safety-General, Relation of Surcharge Storage-Spillway Discharge, Freeboard Allowance, Accuracy of Spillway Design-Flood Estimates, Margin of Safety-Summary, Selection of Spillway Design Flood Hydrograph, General

CHAPTER 6 Spillways

Chute Spillways, Side-Channel Spillways, Shaft Spillways, Emergency Spillways

CHAPTER 7 Forces Acting on Dams


CHAPTER 8 Requirements For Stability of Gravity Dams

Causes of Failure, Location of the Resultant, Resistance to Sliding, Compressive Stresses, Tension on Inclined or Vertical Planes, Margin of Safety, Details of Design and Methods of Construction, Comparison of Stresses and Assumptions, Existing Dams

CHAPTER 9 General Procedure For the Design of Gravity Dams

General Considerations, Theoretical Cross-Sections, Division into Zones, Description of Zones Non-Overflow Dams Rectangular Bases, Description of Zones Spillway Dams Rectangular Bases, Zones for Irregular Bases and Hollow Dams, Expansion of Fundamental Equations
CHAPTER 10 The Design of Solid Nonoverflow Gravity Dams

Introduction, Data Example 1, Computation of Constants, Top Details, Zone I Example 1, Zone II Example 1, Zone III Example 1, Block 1 Zone III Analytical Solution, Block 2 Zone III Trial Solution, Remainder of Zone III, Sliding Factor and Stresses Base of Zone III, Zone IV Example, Block 1 Zone IV, Block 2 Zone IV, Remainder of Zone IV, The Completed Section, Required Precision, Permissible Block Depths, Practical Profile, Data Example 2, Earthquake Forces, Constants and Top Details, Zone 1 Example 2, Zone II Example 2, Block 1 Zone III, Remainder of Zone III, Zone IV, Comparison with Example 1, Effect in Lower Zones Shown, Data Example 3, Discussion of Constants, Zone I to IV, Bottom of Zone IV, Zone V, Redesign, Comparison of Sections, Comparison of Nonoverflow Dams

CHAPTER 11 The Design of Solid Spillway Gravity Dams

Methods of Design, The Shape of the Crest, Discharge Capacity, The Bucket, Backwater Curves, Data for Example 1, Shape and Dimensions of Crest, Water and Silt Pressures, Zones I and Ia, Example 1, Zone II, Lower Zones, Practical Profile, Stress Conditions near Crest, Data for Example 2, Alternative Loadings, Alternative Designs, Data Example 3, Depth of Overflow, Shape of Crest, Stability Computations, Possible Undercut Section, Controlled Crests, Ice on Controlled Crests, Comparison of Solid Spillway Dams

CHAPTER 12 Internal Stresses and Stress Concentrations in Gravity Dams

Discussion of Secondary Stresses, Need for Knowledge of Internal Stresses, Principal Stresses, Stresses on Oblique Planes, Determination of Principal Stresses, Stress Conditions at the Faces, Analysis at Interior Points, Geometric Analysis of Shares, Geometric Analysis of Horizontal Stresses, Numerical Example of Geometric Method, Algebraic Determination of Shears, Algebraic Determination of Horizontal Stress, Numerical Computation of Principal Stress, Heel and Toe Stresses at the Base, Fillets in Corners, Illustration of Foundation Stress Concentrations, Stress Concentration at Holes, Numerical Examples of Circular Outlet, Rectangular Gallery, Multiple Openings

CHAPTER 13 Arch Dams

Classification of Arch Dams, Theory of Cylinder Action, Example 1 Constant Radius, Example 2 Constant Angle, Example 3 Variable Radius, Need for Elastic Analysis, Fundamentals of Elastic Theory, Statically Indeterminate Reactions, Equations for Crown Deflections, Foundation Deformations, Summary of Arch Equations, Cancellation of Factor 1/E, Physical Constants, Example 4 Analytical Analysis, Example 5 Graphic Analysis, Possible Simplifications, The Importance of Temperature Stresses, Symmetrical Arch, Circular Arch of Uniform Thickness, Fillet Arches, Three-Centered Arches, Best Shape for Elastic Arch, Selection of Arch form, Outline of Trail Load Theory, Preparation of Preliminary Plan, Horizontal Elements of Dam, Vertical Elements, Interaction of Elements, Factors Influencing Division of Loads, Typical Load Division, Example 10 Data, Preliminary Dimensions, Selection of Units for Analysis, First Trail Division of Radial Loads, Cantilever Analysis for Radial and Vertical Loads, First Complete Set of Trail Loads, Methods of Arch Analysis, Sample Arch Analysis, Tangential Loads, Twisting of the Cantilevers, Twisting of the Arches, Adjustment for Poisson’s Ratio, Principal Stresses, Unit Load Patterns for Arches, Unit Loads for Cantilevers, Recapitulation of Trial Load Method, Model Analysis of Arch Dams, Examples of Arch Dams
CHAPTER 14 Buttressed Concrete Dams

Advantages of Buttressed Dams, Types of Buttressed Dams, Forces on Buttressed Dams, Earthquake Loading for Buttressed Dams, Spacing of Buttresses, Design of the Buttresses, Beam Stresses in Buttresses, Inclination of Buttress Faces, Shrinkage Cracks and Buttress Reinforcement, Buttresses of Uniform Strength, Connection of Facing with the Foundation, Buttressed Dams on Soft Foundations, Example 1 Simple Slab Dam, Form and Spacing of Buttresses, Slab Analysis Example 1, Corbel Details Example 1, Stability of Buttresses Example 1, Vertical Pressures Buttresses of Example 1, Inclined Pressures Buttresses of Example 1, Horizontal Shear Buttresses of Example 1, Recapitulation of Stresses Buttresses of Example 1, Reinforcement of Buttresses Example 1, Example 2 Overflow Slab Dam, Principles of Design, Form of Arches, Loading and Arch Analysis, Example 3 Nonoverflow Multiple-Arch Dam, Description of Arches Example 3, Arch Stresses Example 3, Stability Computations Example 3, Stresses in Buttresses of Example 3, Recapitulation Example 3, Overflow Multiple-Arch Dam, Lake Hodges Multiple-Arch Dam, Florence Lake Multiple-Arch Dam, Bartlett Multiple-Arch Dam, Characteristics of Round-Head Type, Rio Salado Round-Head Buttress Dam, Multiple-Dome Dams, Triple-Arch Dams, Slab and Column Dams

CHAPTER 15 Concrete For Concrete Dams

General, Cement, Fine Aggregate, Coarse Aggregate, Water, Admixture, Concrete Mixes, Batching and Mixing, Transportation and Placing, Forms and Formed Surface, Height of Lifts, Curing and Protection, Joints – Horizontal and Vertical, Temperature Control Cracking and Checking, Waterproofing, Tests of Concrete and Concrete Materials

CHAPTER 16 Soils Tests and Their Utilization


CHAPTER 17 Earth Dams – General Principles of Design

CHAPTER 18 Stability of Earth Dams


CHAPTER 19 Details of Earth Dams


CHAPTER 20 Rock-Fill Dams

General, Foundation and Cutoff Wall, Cross-Section, Safety Against Sliding, Main Rock Fill, Rubble Backing of Impervious Face, Impervious Upstream Facing, Settlement and Sluicing, Spillway and Freeboard, Core Wall Type of Rock-Fill Dam, Composite Type of Rock-Fill Dam, Earth Core Type of Rock-Fill Dam, North African Rack-Fill Dams, Bibliography

CHAPTER 21 Steel Dams

General, Foundation and Cutoff Wall, Cross-Section, Safety Against Sliding, Main Rock Fill, Rubble Backing of Impervious Face, Impervious Upstream Facing, Settlement and Sluicing, Spillway and Freeboard, Core Wall Type of Rock-Fill Dam, Composite Type of Rock-Fill Dam, Earth Core Type of Rock-Fill Dam, North African Rack-Fill Dams, Bibliography
CHAPTER 22 Timber Dams

Advantages of Timber Dams, The A-Frame Type, The rock-Filled Crib Type, The Beaver Type, Stability of Timber Dams, Tightening the Foundation, Protection Against Erosion, Choice of Type, Limitations of Timber Dams

CHAPTER 23 Details and Accessories

Construction Joints, Architectural Treatment, Fish Protection, Log Chutes

CHAPTER 24 Headwater Control

Spillways and Sluices, Spillway Control, Spillway Control Devices, Crest Control, Crest Gates, Siphon Spillways, Ice Troubles at Crest Gates, Controlling Devices for Reservoir Outlets, Bibliography